Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 622(7982): 393-401, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821590

RESUMO

Recent human decedent model studies1,2 and compassionate xenograft use3 have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model. The porcine donor was engineered to carry 69 genomic edits, eliminating glycan antigens, overexpressing human transgenes and inactivating porcine endogenous retroviruses. In vitro functional analyses showed that the edited kidney endothelial cells modulated inflammation to an extent that was indistinguishable from that of human endothelial cells, suggesting that these edited cells acquired a high level of human immune compatibility. When transplanted into cynomolgus monkeys, the kidneys with three glycan antigen knockouts alone experienced poor graft survival, whereas those with glycan antigen knockouts and human transgene expression demonstrated significantly longer survival time, suggesting the benefit of human transgene expression in vivo. These results show that preclinical studies of renal xenotransplantation could be successfully conducted in nonhuman primates and bring us closer to clinical trials of genetically engineered porcine renal grafts.


Assuntos
Rejeição de Enxerto , Transplante de Rim , Macaca fascicularis , Suínos , Transplante Heterólogo , Animais , Humanos , Animais Geneticamente Modificados , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Transplante de Rim/métodos , Polissacarídeos/deficiência , Suínos/genética , Transplante Heterólogo/métodos , Transgenes/genética
2.
Xenotransplantation ; 29(6): e12780, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36125388

RESUMO

The phenomenon of diminishing hematocrit after in vivo liver and lung xenotransplantation and during ex vivo liver xenoperfusion has largely been attributed to action by resident liver porcine macrophages, which bind and destroy human erythrocytes. Porcine sialoadhesin (siglec-1) was implicated previously in this interaction. This study examines the effect of porcine genetic modifications, including knockout of the CMAH gene responsible for expression of Neu5Gc sialic acid, on the adhesion of human red blood cells (RBCs) to porcine macrophages. Wild-type (WT) porcine macrophages and macrophages from several strains of genetically engineered pigs, including CMAH gene knockout and several human transgenes (TKO+hTg), were incubated with human RBCs and "rosettes" (≥3 erythrocytes bound to one macrophage) were quantified by microscopy. Our results show that TKO+hTg genetic modifications significantly reduced rosette formation. The monoclonal antibody 1F1, which blocks porcine sialoadhesin, significantly reduced rosette formation by WT and TKO+hTg macrophages compared with an isotype control antibody. Further, desialation of human RBCs with neuraminidase before addition to WT or TKO+hTg macrophages resulted in near-complete abrogation of rosette formation, to a level not significantly different from porcine RBC rosette formation on porcine macrophages. These observations are consistent with rosette formation being mediated by binding of sialic acid on human RBCs to sialoadhesin on porcine macrophages. In conclusion, the data predict that TKO+hTg genetic modifications, coupled with targeting of porcine sialoadhesin by the 1F1 mAb, will attenuate erythrocyte sequestration and anemia during ex vivo xenoperfusion and following in vivo liver, lung, and potentially other organ xenotransplantation.


Assuntos
Ácido N-Acetilneuramínico , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Humanos , Suínos , Animais , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Transplante Heterólogo/métodos , Ácido N-Acetilneuramínico/metabolismo , Macrófagos , Eritrócitos/metabolismo
3.
Am J Transplant ; 22(1): 46-57, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34331749

RESUMO

Porcine cells devoid of three major carbohydrate xenoantigens, αGal, Neu5GC, and SDa (TKO) exhibit markedly reduced binding of human natural antibodies. Therefore, it is anticipated that TKO pigs will be better donors for human xenotransplantation. However, previous studies on TKO pigs using old world monkeys (OWMs) have been disappointing because of higher anti-TKO pig antibodies in OWMs than humans. Here, we show that long-term survival of renal xenografts from TKO pigs that express additional human transgenes (hTGs) can be achieved in cynomolgus monkeys. Kidney xenografts from TKO-hTG pigs were transplanted into eight cynomolgus recipients without pre-screening for low anti-pig antibody titers. Two recipients of TKO-hTG xenografts with low expression of human complement regulatory proteins (CRPs) (TKO-A) survived for 2 and 61 days, whereas six recipients of TKO-hTG xenografts with high CRP expression (TKO-B) survived for 15, 20, 71, 135, 265, and 316 days. Prolonged CD4+ T cell depletion and low anti-pig antibody titers, which were previously reported important for long-term survival of αGal knock-out (GTKO) xenografts, were not always required for long-term survival of TKO-hTG renal xenografts. This study indicates that OWMs such as cynomolgus monkeys can be used as a relevant model for clinical application of xenotransplantation using TKO pigs.


Assuntos
Transplante de Rim , Animais , Animais Geneticamente Modificados , Rejeição de Enxerto/genética , Humanos , Macaca fascicularis , Suínos , Transplante Heterólogo
4.
Nat Biomed Eng ; 5(2): 134-143, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32958897

RESUMO

The clinical applicability of porcine xenotransplantation-a long-investigated alternative to the scarce availability of human organs for patients with organ failure-is limited by molecular incompatibilities between the immune systems of pigs and humans as well as by the risk of transmitting porcine endogenous retroviruses (PERVs). We recently showed the production of pigs with genomically inactivated PERVs. Here, using a combination of CRISPR-Cas9 and transposon technologies, we show that pigs with all PERVs inactivated can also be genetically engineered to eliminate three xenoantigens and to express nine human transgenes that enhance the pigs' immunological compatibility and blood-coagulation compatibility with humans. The engineered pigs exhibit normal physiology, fertility and germline transmission of the 13 genes and 42 alleles edited. Using in vitro assays, we show that cells from the engineered pigs are resistant to human humoral rejection, cell-mediated damage and pathogenesis associated with dysregulated coagulation. The extensive genome engineering of pigs for greater compatibility with the human immune system may eventually enable safe and effective porcine xenotransplantation.


Assuntos
Sistemas CRISPR-Cas , Engenharia Genética/métodos , Células Germinativas/metabolismo , Sus scrofa/genética , Sus scrofa/virologia , Transplante Heterólogo , Animais , Proteína 9 Associada à CRISPR/genética , Células Cultivadas , Galactosiltransferases/genética , Técnicas de Inativação de Genes , Oxigenases de Função Mista/genética , N-Acetilgalactosaminiltransferases/genética , Sus scrofa/imunologia
5.
PLoS One ; 15(12): e0237759, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33332350

RESUMO

DNA repair requires reorganization of the local chromatin structure to facilitate access to and repair of the DNA. Studying DNA double-strand break (DSB) repair in specific chromatin domains has been aided by the use of sequence-specific endonucleases to generate targeted breaks. Here, we describe a new approach that combines KillerRed, a photosensitizer that generates reactive oxygen species (ROS) when exposed to light, and the genome-targeting properties of the CRISPR/Cas9 system. Fusing KillerRed to catalytically inactive Cas9 (dCas9) generates dCas9-KR, which can then be targeted to any desired genomic region with an appropriate guide RNA. Activation of dCas9-KR with green light generates a local increase in reactive oxygen species, resulting in "clustered" oxidative damage, including both DNA breaks and base damage. Activation of dCas9-KR rapidly (within minutes) increases both γH2AX and recruitment of the KU70/80 complex. Importantly, this damage is repaired within 10 minutes of termination of light exposure, indicating that the DNA damage generated by dCas9-KR is both rapid and transient. Further, repair is carried out exclusively through NHEJ, with no detectable contribution from HR-based mechanisms. Surprisingly, sequencing of repaired DNA damage regions did not reveal any increase in either mutations or INDELs in the targeted region, implying that NHEJ has high fidelity under the conditions of low level, limited damage. The dCas9-KR approach for creating targeted damage has significant advantages over the use of endonucleases, since the duration and intensity of DNA damage can be controlled in "real time" by controlling light exposure. In addition, unlike endonucleases that carry out multiple cut-repair cycles, dCas9-KR produces a single burst of damage, more closely resembling the type of damage experienced during acute exposure to reactive oxygen species or environmental toxins. dCas9-KR is a promising system to induce DNA damage and measure site-specific repair kinetics at clustered DNA lesions.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Dano ao DNA/genética , Reparo do DNA/genética , DNA/genética , Estresse Oxidativo/genética , Linhagem Celular , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Endonucleases/genética , Genoma/genética , Células HEK293 , Humanos , Luz , RNA Guia de Cinetoplastídeos/genética
6.
Proc Natl Acad Sci U S A ; 117(44): 27566-27577, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077594

RESUMO

Recent studies have implicated DNA polymerases θ (Pol θ) and ß (Pol ß) as mediators of alternative nonhomologous end-joining (Alt-NHEJ) events, including chromosomal translocations. Here we identify subunits of the replicative DNA polymerase δ (Pol δ) as promoters of Alt-NHEJ that results in more extensive intrachromosomal mutations at a single double-strand break (DSB) and more frequent translocations between two DSBs. Depletion of the Pol δ accessory subunit POLD2 destabilizes the complex, resulting in degradation of both POLD1 and POLD3 in human cells. POLD2 depletion markedly reduces the frequency of translocations with sequence modifications but does not affect the frequency of translocations with exact joins. Using separation-of-function mutants, we show that both the DNA synthesis and exonuclease activities of the POLD1 subunit contribute to translocations. As described in yeast and unlike Pol θ, Pol δ also promotes homology-directed repair. Codepletion of POLD2 with 53BP1 nearly eliminates translocations. POLD1 and POLD2 each colocalize with phosphorylated H2AX at ionizing radiation-induced DSBs but not with 53BP1. Codepletion of POLD2 with either ligase 3 (LIG3) or ligase 4 (LIG4) does not further reduce translocation frequency compared to POLD2 depletion alone. Together, these data support a model in which Pol δ promotes Alt-NHEJ in human cells at DSBs, including translocations.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Polimerase III/metabolismo , Translocação Genética , Quebras de DNA de Cadeia Dupla , DNA Polimerase III/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , RNA Interferente Pequeno/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(40): 10076-10081, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30213852

RESUMO

Chromosomal rearrangements, including translocations, are early and essential events in the formation of many tumors. Previous studies that defined the genetic requirements for rearrangement formation have identified differences between murine and human cells, most notably in the role of classic and alternative nonhomologous end-joining (NHEJ) factors. We reported that poly(ADP)ribose polymerase 3 (PARP3) promotes chromosomal rearrangements induced by endonucleases in multiple human cell types. We show here that in contrast to classic (c-NHEJ) factors, Parp3 also promotes rearrangements in murine cells, including translocations in murine embryonic stem cells (mESCs), class-switch recombination in primary B cells, and inversions in tail fibroblasts that generate Eml4-Alk fusions. In mESCs, Parp3-deficient cells had shorter deletion lengths at translocation junctions. This was corroborated using next-generation sequencing of Eml4-Alk junctions in tail fibroblasts and is consistent with a role for Parp3 in promoting the processing of DNA double-strand breaks. We confirmed a previous report that Parp1 also promotes rearrangement formation. In contrast with Parp3, rearrangement junctions in the absence of Parp1 had longer deletion lengths, suggesting that Parp1 may suppress double-strand break processing. Together, these data indicate that Parp3 and Parp1 promote rearrangements with distinct phenotypes.


Assuntos
Linfócitos B/metabolismo , Reparo do DNA por Junção de Extremidades/fisiologia , Switching de Imunoglobulina/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Quinase do Linfoma Anaplásico , Animais , Fibroblastos/metabolismo , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
9.
Nat Commun ; 8: 15110, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28447610

RESUMO

Chromosomal rearrangements are essential events in the pathogenesis of both malignant and nonmalignant disorders, yet the factors affecting their formation are incompletely understood. Here we develop a zinc-finger nuclease translocation reporter and screen for factors that modulate rearrangements in human cells. We identify UBC9 and RAD50 as suppressors and 53BP1, DDB1 and poly(ADP)ribose polymerase 3 (PARP3) as promoters of chromosomal rearrangements across human cell types. We focus on PARP3 as it is dispensable for murine viability and has druggable catalytic activity. We find that PARP3 regulates G quadruplex (G4) DNA in response to DNA damage, which suppresses repair by nonhomologous end-joining and homologous recombination. Chemical stabilization of G4 DNA in PARP3-/- cells leads to widespread DNA double-strand breaks and synthetic lethality. We propose a model in which PARP3 suppresses G4 DNA and facilitates DNA repair by multiple pathways.


Assuntos
Proteínas de Ciclo Celular/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , DNA/metabolismo , Quadruplex G , Poli(ADP-Ribose) Polimerases/genética , Translocação Genética/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Enzimas de Conjugação de Ubiquitina/genética , Células A549 , Hidrolases Anidrido Ácido , Linhagem Celular Tumoral , Cromossomos/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA por Junção de Extremidades/genética , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Recombinação Homóloga , Humanos , Modelos Genéticos , Mutações Sintéticas Letais
10.
Blood ; 128(21): 2517-2526, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27742706

RESUMO

The Bruton tyrosine kinase (BTK) inhibitor ibrutinib induces responses in 70% of patients with relapsed and refractory mantle cell lymphoma (MCL). Intrinsic resistance can occur through activation of the nonclassical NF-κB pathway and acquired resistance may involve the BTK C481S mutation. Outcomes after ibrutinib failure are dismal, indicating an unmet medical need. We reasoned that newer heat shock protein 90 (HSP90) inhibitors could overcome ibrutinib resistance by targeting multiple oncogenic pathways in MCL. HSP90 inhibition induced the complete degradation of both BTK and IκB kinase α in MCL lines and CD40-dependent B cells, with downstream loss of MAPK and nonclassical NF-κB signaling. A proteome-wide analysis in MCL lines and an MCL patient-derived xenograft identified a restricted set of targets from HSP90 inhibition that were enriched for factors involved in B-cell receptor and JAK/STAT signaling, the nonclassical NF-κB pathway, cell-cycle regulation, and DNA repair. Finally, multiple HSP90 inhibitors potently killed MCL lines in vitro, and the clinical agent AUY922 was active in vivo against both patient-derived and cell-line xenografts. Together, these findings define the HSP90-dependent proteome in MCL. Considering the disappointing clinical activity of HSP90 inhibitors in other contexts, trials in patients with MCL will be essential for defining the efficacy of and mechanisms of resistance after ibrutinib failure.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Linfoma de Célula do Manto/tratamento farmacológico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Resorcinóis/farmacologia , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Camundongos , Mutação de Sentido Incorreto , Piperidinas , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cancer Cell ; 28(1): 29-41, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26175414

RESUMO

A variety of cancers depend on JAK2 signaling, including the high-risk subset of B cell acute lymphoblastic leukemias (B-ALLs) with CRLF2 rearrangements. Type I JAK2 inhibitors induce paradoxical JAK2 hyperphosphorylation in these leukemias and have limited activity. To improve the efficacy of JAK2 inhibition in B-ALL, we developed the type II inhibitor CHZ868, which stabilizes JAK2 in an inactive conformation. CHZ868 potently suppressed the growth of CRLF2-rearranged human B-ALL cells, abrogated JAK2 signaling, and improved survival in mice with human or murine B-ALL. CHZ868 and dexamethasone synergistically induced apoptosis in JAK2-dependent B-ALLs and further improved in vivo survival compared to CHZ868 alone. These data support the testing of type II JAK2 inhibition in patients with JAK2-dependent leukemias and other disorders.


Assuntos
Aminopiridinas/administração & dosagem , Antineoplásicos/administração & dosagem , Benzimidazóis/administração & dosagem , Dexametasona/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Janus Quinase 2/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Aminopiridinas/farmacologia , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Janus Quinase 2/química , Janus Quinase 2/genética , Camundongos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biochim Biophys Acta ; 1831(2): 361-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23022663

RESUMO

In yeast, deletion of ERG27, which encodes the sterol biosynthetic enzyme, 3-keto-reductase, results in a concomitant loss of the upstream enzyme, Erg7p, an oxidosqualene cyclase (OSC). However, this phenomenon occurs only in fungi, as mammalian Erg27p orthologues are unable to rescue yeast Erg7p activity. In this study, an erg27 mutant containing the mouse ERG27 orthologue was isolated that was capable of growing without sterol supplementation (FGerg27). GC/MS analysis of this strain showed an accumulation of squalene epoxides, 3-ketosterones, and ergosterol. This strain which was crossed to a wildtype and daughter segregants showed an accumulation of squalene epoxides as well as ergosterol indicating that the mutation entailed a leaky block at ERG7. Upon sequencing the yeast ERG7 gene an A598S alteration was found in a conserved alpha helical region. We theorize that this mutation stabilizes Erg7p in a conformation that mimics Erg27p binding. This mutation, while decreasing OSC activity still retains sufficient residual OSC activity such that the strain in the presence of the mammalian 3-keto reductase enzyme functions and no longer requires the yeast Erg27p. Because sterol biosynthesis occurs in the ER, a fusion protein was synthesized combining Erg7p and Erg28p, a resident ER protein and scaffold of the C-4 demethyation complex. Both FGerg27 and erg27 strains containing this fusion plasmid and the mouse ERG27 orthologue showed restoration of ergosterol biosynthesis with minimal accumulation of squalene epoxides. These results indicate retention of Erg7p in the ER increases its activity and suggest a novel method of regulation of ergosterol biosynthesis.


Assuntos
Ergosterol/biossíntese , Transferases Intramoleculares/metabolismo , Mutação , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Ergosterol/química , Cromatografia Gasosa-Espectrometria de Massas , Transferases Intramoleculares/genética , Dados de Sequência Molecular , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
13.
J Biol Chem ; 286(27): 23842-51, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21489983

RESUMO

Niemann-Pick type C (NP-C) disease is a fatal lysosomal lipid storage disorder for which no effective therapy exists. A genome-wide, conditional synthetic lethality screen was performed using the yeast model of NP-C disease during anaerobiosis, an auxotrophic condition that requires yeast to utilize exogenous sterol. We identified 12 pathways and 13 genes as modifiers of the absence of the yeast NPC1 ortholog (NCR1) and quantified the impact of loss of these genes on sterol metabolism in ncr1Δ strains grown under viable aerobic conditions. Deletion of components of the yeast NuA4 histone acetyltransferase complex in ncr1Δ strains conferred anaerobic inviability and accumulation of multiple sterol intermediates. Thus, we hypothesize an imbalance in histone acetylation in human NP-C disease. Accordingly, we show that the majority of the 11 histone deacetylase (HDAC) genes are transcriptionally up-regulated in three genetically distinct fibroblast lines derived from patients with NP-C disease. A clinically approved HDAC inhibitor (suberoylanilide hydroxamic acid) reverses the dysregulation of the majority of the HDAC genes. Consequently, three key cellular diagnostic criteria of NP-C disease are dramatically ameliorated as follows: lysosomal accumulation of both cholesterol and sphingolipids and defective esterification of LDL-derived cholesterol. These data suggest HDAC inhibition as a candidate therapy for NP-C disease. We conclude that pathways that exacerbate lethality in a model organism can be reversed in human cells as a novel therapeutic strategy. This "exacerbate-reverse" approach can potentially be utilized in any model organism for any disease.


Assuntos
Colesterol/metabolismo , Lisossomos/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Anaerobiose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Linhagem Celular , Colesterol/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Lisossomos/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esfingolipídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...